
explore

engage

elevate

CRM Release Management Tips &
Best Practices

Razwan Choudry

Microsoft CRM Consultant / Architect / Training Instructor

CRM Consultants UK

explore engage elevate

About Razwan

Dynamics CRM Consultant since 2006

Microsoft CRM Consultant Architect & Training
Instructor available on ad hoc basis

Author of ‘Winning Strategies for CRM Success’

Twitter @crmconsultants

My Free Solutions: XRM Toolbox – ‘Bulk Merge
Duplicates’ Plugin / Autonumber / Geocoder &
more on www.crmconsultants.co.uk

http://www.crmconsultants.co.uk/

explore engage elevate

Putting the CRM in SCRUM

How can organisations successfully adopt the Agile approach
with CRM implementations

Factors to consider when Sprint Planning

Risks and Impact of release cycles on overall CRM Success

Managing parallel / concurrent crm development projects

Understanding how Solutions work – Managed Vs Unmanaged

Managing Development environments

Automating the release process

explore engage elevate

Making Agile work for CRM

Agile allows customers to deliver results quickly with incremental release cycles
and sprints

CRM is purchased as ready to use delivering Quick Wins / Fast Deployments

Allows the customer to take ownership of their crm

Empowers non developers to make customisations, but what are the drawbacks

Agile may instil the mentality that defects can be fixed in later releases, potentially
offloading the address of important design considerations such as performance

Project Priorities may change, how can we ensure our solution release cycle will
still work

Agile doesn't work unless you have processes in place to support dependencies

How can we improve release management & deployment Tasks with ALM
automation

Preventing solution errors & issues post deployment – Prevention is always better
than cure even if agile allows us to ‘Fix Later’

explore engage elevate

CRM is Forever

• New Requirements and Changes as Business Grows

• New Customer Demands

• New End User Demands

• Continuous CRM Updates and new Feature releases

• New SDK Features

• Deprecations of existing / old features

• Constantly evolving strategy to meet customer & business needs

• Eco System offerings disruptive to traditional methods

• Require repeatable processes to support changes

explore engage elevate

CRM Gremlins

explore engage elevate

CRM Gremlins

Solution Import Failures

Adding Dependant Objects to Solution Warning

Missing Dependencies

Deleting fields with same name / different type – SQL error during import

Customise Form Button – Updates the Default Solution

Shipping Core customisations from different environments / Object type
code ordering could cause conflicts

Solution Components with different Managed Properties/ States

Unable to delete / remove solutions when dependencies are added

Security Roles – Only root is included

Workflow - needs to be owned by same person, otherwise you cant import

Deployment tasks taking too long / Complicated

Removing Unwanted components after importing solution

explore engage elevate

Post go live issues that should be considered

Browser Issues / Compatibility mode

Missing Config for Users / Email

Security roles – access errors

Outlook Client / Incompatible Add ons

Emails not sending

GUIDS are different? Breaking integrations / Workflows

Licence types not working as expected

Sitemap / Ribbon customisations – Consider Billing Admin

Performance Issues often only reported post go live

explore engage elevate

Impact of Release Cycles on CRM Adoption

Errors releasing solutions

Preventing Upgrades

Unsupported Customisations

Limited Hotfixes and Support period

User Adoption

Increase in User Complaints

Missing Deadlines

Increase in project Costs

explore engage elevate

Importance of QA / UAT

Often overlooked in CRM Project

Given minimal priority / resources

Issues are rushed close to release date

How much resource & effort is put on Integration testing

Performance should be considered during solution design

Load testing / regression testing

Could have wider implications / long term implications

Once customisations have been released, its difficult to roll
back for both Managed & Unmanaged Solutions

Using TFS will help track and issues early on

explore engage elevate

Common Releases Issues

Many resources often involved

Difficult to manage and coordinate

Missed out steps due to many manual tasks

Out of Sync Development / UAT environments

Rushed testing / Defects

Unable to track who made changes

Regular CRM Updates hard to keep upto date / SDK
Changes

explore engage elevate

Customising Solutions

Data Dictionary – share available fields and plan changes,
helps prevent errors when creating objects

Entity Schema design should be completed before every
development project to plan for dependencies

Separate / Isolate Development Environments to reduce
dependencies

Use a Core Solution to Maintain dependencies between Dev
environments

Use separate Env for Proof of concepts, create customisations
from scratch to prevent Gremlins!

Automate release process allows team to focus on their tasks

explore engage elevate

Risks

Not adhering to a repeatable release process will have a
direct impact on crm project success

Project Complexity > complex development increases
project risk

Numbers of devs / size of teams

Lack of Resources > ie QA?

User Adoption > if IT staff struggle, Testing and UAT
issues will have a direct impact on user adoption

Large Infrastructure requirements

Lack of Training

explore engage elevate

Problems with using Same Dev for All projects

All Solutions required to begin as Unmanaged

Soon as another solution is added will create dependencies on
prior project

Exporting Solution A after Solution B was Added will mean
Solution A will automatically inherit any new dependencies
created by Solution B

This will break the Solution release process, even if we used a
Master Solution for shared objects as solution will be exported
with dependencies

Single dev only suitable for simple and linear crm release cycle
for single solutions or linear release projects

Need to regularly backup versions of both Managed &
Unmanaged from Development

explore engage elevate

Managing Dependencies

New Dependencies are added to the earlier solutions every
time a new solution is added with dependant components

Exporting Solution A will include new Dependencies that were
added by Solution A, so will not be able to import Solution A
into Target Again

Solutions C developed on environments without Solution B
may result in Errors when creating relationships that already
exist in Target, will not allow you to overwrite

Occurs for both Managed or Unmanaged

Solution layering should be considered during design /
analysis stages not from development / release stage

explore engage elevate

Managing Dependencies

All Solutions will Have Dependencies on Core objects

The Release Order of Solution often determines how
the Dependencies are managed

When there is no clear release order, there should be
effort to manage the core dependencies in a dedicated
solution

Using a Master / Core Solution will facilitate the release
of multiple solutions

Master / Core Solution should have Dedicated
Development environment

Project Specific Development environments need to be
updated with Master / Core Solution at regular and
controlled intervals

Changes Made directly to production will contribute to
Dependencies, cause issues with removing solutions.
This when we should Consider Using Managed
Components

Solution C

Solution B

Solution A

explore engage elevate

Creating Solutions

How to structure your solutions for release?

The recommended approach is to keep the number of solutions low to avoid
complexity and ensure the solution customizations are independent from each
other.

Single Solution (Size limit)
29.296 MB for crm online
6 MB default for crm on premise
Difficult to apply hotfix for managed

Component Based Solutions (size limit)
Merging , layering , ordering becomes more tricky

Feature Based Solution (recommended)

Recommended to isolate features into separate CRM solutions so that no merge
conflicts & dependencies need to be resolved within CRM customizations.

Incorporate a Core / Base Solution to Manage Dependencies when working in an
environment with large development teams and fluxing release cycles

explore engage elevate

Managing Dependencies with a Core / Base Solution

Export a New Solution from the Latest Development
Environment, Containing only Common objects that may be
used in other projects. Export this to your New Dev

Now when you start development on your Project you will be
able to consume existing components and add them into your
solution rather than creating them if they already exist

Any Changes made to the Core Solution Components by any
projects need to be exported to all development environments
using the Core Solution

The Core Solution will need to be updated whenever another
project updates components of the core solution, this can be
done before

explore engage elevate

Managing Parallel Solution Deployment

explore engage elevate

Solution Design

Important to design Schema considering broader scope of
future projects

Include Existing and Related Projects in schema designs to
show overall dependencies

Data Dictionary will improve insight and collobaration

Ensures the Objects are created with future projects in mind
Relationship Type
Reuse of Core Objects

Help us be aware of dependencies

Impact
Rework of Entity design
Break existing solutions

explore engage elevate

Managing Development Environments

How can we ensure development environments and solutions
are maintained with the correct version of solutions that will
allow successful release into UAT & Production?

Support development of Concurrent / Parallel CRM Solution
Development

Streamline the release process to facilitate Development,
Testing and Go Live

Ensure our Solutions are compatible with Rollups & Updates

Problems with using the Same Development for all projects?
Dependencies
Conflicts
Testings
No isolation when trying to resolve issues

explore engage elevate

Managing Development Environments

Dev N

Dev X

Dev Y

Master/ Core Dev

Unmanaged

Unmanaged

Unmanaged

Unmanaged

CIT UAT/QA Production

Source

Control

Versions .Net Binaries Builds Unit Tests

Config /

Deployment

Steps

Unmanaged

Managed

CRM Platform
Version

Configurati0n Security &
Infrastructure

explore engage elevate

Solutions to support Agile Release process

The Solutions feature was introduced in CRM 2011, solutions are used to
package your customisations and import/ export them to CRM deployments

Empowers partners to use XRM & .Net framework to deliver ISV Solutions

Import, Update and Maintain Customisation Components

Publisher– Allows Multiple development teams and helps prevent conflicting
customisations

Add Prefix to Entity and Field Attributes

Define Integer Range for Picklists/ Optionsets.

Version Number – Manage Development / Releases / Updates / Hotfixes

Compatibility to import from earlier CRM Versions, Option to export to specific
target CRM version

explore engage elevate

Solutions Overview

Solutions Customisation Components

Settings

Publishers

Versioning

Managed Vs Unmanaged

Import & Export

Creating

Updating Solution Components

Removing Solution Components

Layers

Merging

explore engage elevate

Solution Components

Solution files can contain the
following CRM system objects

Can contain versions;

can be exported for change
management.

Can be Managed and
Unmanaged

Can contain Global Settings,

But not personal settings

explore engage elevate

Whats not included in a solution?

Business Units

Users

Teams

Queues

Goals

Subjects

Product Catalogue

Personal Views / Dashboards

Personal User Settings

Customer Data

explore engage elevate

Working with solution files

Solution file consists of;
Customizations.xml
Solution.xml
Workflows
Web resources (built by the web resource file projects)
Plug-in assemblies

The customizations.xml file is exported in the solution zip. Certain
portions of the customizations.xml file can be edited manually.
SDK\Schemas provides XSD to help you make supported modifications

Editing a managed solution file is not supported

Not all elements of the customizations.xml file can be edited. However all
these can be done GUI tools

Extracting the Solution file is useful when comparing differences

explore engage elevate

Layers

To Understand Solution Truly, you have to think in Layers

• System Layer – Default Solution

• Unmanaged layer

• Manager Layer – Managed Components

explore engage elevate

Component States

Why are System Components in an
Unmanaged Solution have managed
state by default?

Keeps System or Business Entities as
Customisable as these entities are used
repeatedly for many other
customisations projects

Managed properties only become
effective after their associated
components are installed as part of a
managed solution.

The value or the IsCustomizable
property, the type of entity, and the
type of solution will have an impact on
the behaviour of an entity

Can be used use to prevent Customers
from Deleting/ Editing System Objects
or Breaking Core Functionality after
being installed on production

explore engage elevate

Unmanaged Solutions

All Solutions begin as Unmanaged

Unmanaged Solution customisation are Made at the
Unmanaged Layer which is also part of the Default
Solution

Allows us to make customisations, register plugin steps
etc, before we can export as Managed

Deleting the Unmanaged Solution only deletes the
reference to the solution, not the customisation
components

Requires manually deleting the customisation
components from either the solution or Default Solution

explore engage elevate

Managed Solutions

Manged Solutions need to be exported as Managed from an
Unmanaged Solution

The whole point of Managed is locking down the Component
states so they cannot be edited

This secures the solution in the Target / Production so it keeps
the solution feature working and prevents end users from
breaking it. Therefore it is maintainable.

Managed Solutions are installed at the Managed Layer

Deleting the Managed Solution will remove all its
customisations as well as data contained

Any Managed components that are customisable will be done
at the Unmanaged Layer

explore engage elevate

Managed Vs Unmanaged Solutions

CRM Supports using a mixture of both and allowing multiple solutions to easily
apply bug fixes or updates on the environment.

The downside is there is no standard mechanism of removing fields from entities,
webresources etc. Could create many redundant objects.

The ALM for Microsoft CRM officially states that Unmanaged solution is only used
for development and Managed is released down stream to production. (Ideal for
ISVs and works for incidental development or where development is following a
fixed release calendar, but what about for Agile scenarios where the Customer is
responsible for their own deployments?

Once you release as Managed you cannot covert back to Unmanaged, however
an Unmanaged solution can be converted to Managed

However Managed Solutions may interfere with the Agile Release Process where
the solution is being developed, tested and used at the same time.
If a managed solution is deployed to Test, QA and Production, If a blocking issue
occurs in the production environment it will take longer to resolve. It may be
better to use Unmanaged so you can take a snapshot of production, replicate &
resolve, update unmanaged solution and release to Production.

explore engage elevate

Updating Solutions, Layers & Limitations

Solution Component needs to belong to either a Managed or
Unmanaged Component, Cannot be a Mixture of both!

Components in the unmanaged solution layer cannot be
updated by a managed solution.

Cannot change the attributes of unmanaged solution
components so that it is in a managed solution layer, so it can
be edited or changed by a managed solution.

Manually deleting the components that the unmanaged
solution installed, you can import that solution again as
managed and then install an update for it with a managed
solution. However you will lose your data, will need to export
the data prior to deletion and then re-import it when the
components are installed as managed

explore engage elevate

The Solution Publisher

Publisher– Allows Multiple development teams and helps prevent conflicting customisations
Add Prefix to Entity and Field Attributes
Define Integer Range for Picklists/ Optionsets.

The solution publisher for a managed solution plays an important factor when
releasing an update to your managed solution. Using the same solution publisher you
can create a new managed solution to update a managed solution you previously
released.

Components in managed layers will be owned by the solution publisher.

Publisher owns the component, not the solution.

Components with same name and publisher will be considered the same thing.

Removing a solution does not remove a component when it is referenced by another
solution using the same shared publisher.

Default Publisher created for each environment with same default new_prefix and Integer
range for optionsets

Important when creating development environents

explore engage elevate

Updating Solutions Considerations

Importance of Publisher And Solution Name when Updating Solutions

Maintain customizations (recommended) - This option maintains any
unmanaged customizations performed on components, however some of the
updates included in this solution may not take effect.

Overwrite customizations - Overwrites any unmanaged customizations
previously performed on components included in this solution. All updates
included in this solution will take effect.

Using the Overwrite customizations option when investigating customizations
conflict issues. They can export their unmanaged solutions before so that they
can re-apply if required.

“Creating a new solution with a different name and same publisher, will appear to
work until the next version of the solution is deployed. Selecting the option to
import without overwriting will import the new version of the solution within a
layer directly above the previous version of the core solution. This will be beneath
the solution containing the hotfix, which therefore may result in configuration
and customization changes not being surfaced.”

explore engage elevate

Applying Solution Updates / Hotfixes

Solution must maintain the same solution publisher and the same solution name

The Installed Date remains the Same when updating a solution, which can be misleading

Updating the Solution does not cause loss of data

Maintain the version number by overwriting the existing solution (only include the affected components)
Using the recommended approach to preserve customizations when importing managed solutions, maintaining the
version number will automatically replace any components within the solution being imported

Lack of ability to identify that a hotfix has been applied. Consider adding a note

Or with an incremented version number of the existing solution and create a new layer
incrementing the version number will create a new managed layer for the solution above the old layer.

can become misleading, as it suggests that the hotfix can be uninstalled or deleted which is not necessarily true due to
the additive nature of the platform.

Creating a new solution with a different name and same publisher, will appear to work until the next
version of the solution is deployed. selecting the option to import without overwriting will import the new
version of the core solution within a layer directly above the previous version of the core solution. This will
be beneath the solution containing the hotfix, which therefore may result in configuration and
customization changes not being surfaced.

Creating a New Solution with just the updates will allow you to rollback, but will add an additional solution
into your organisation, which could potentially clutter

explore engage elevate

Merging

Merging is how
CRM will
Virtually Merge
the Behaviour of
the multiple
solutions
according to the
following rules

Allows
combination of
many Managed
and Unmanaged
solutions

Order of Solution
Imports may
effect behaviour

explore engage elevate

Deleting / Removing Solutions

Managed Solutions will be removed including data

Deleting the Unmanaged Solution will only delete the
Solution Container, However all Customised Components
will Remain. Will have to manually delete any unmanaged
components from the Default Customisations

Deleting a Managed Solution will Remove all the
Customised Components included in the Solution

Dependencies are know to cause Problems preventing to
remove Managed Solutions

Some customers have resorted to Unsupported
Techniques when unable to uninstall Managed Solutions

explore engage elevate

Removing Customisations from Managed Solutions

Solutions are ‘Additive’, so to Update a Managed Solution by removing a customisation a Temporary
solution is required;

Create a temporary managed solution for the customisations you want to keep using the same publisher,
but with a Unique Name. This is so it contains the customised components at a separate managed layer.

xrm toolbox will be able to copy all the components for you , eliminating risk of missing any components

Import it on top of your existing managed solution

Delete the older managed solution
This deletes the unwanted managed components while the “holding” solution prevents the wanted customisations from
being deleted

During the delete process, the CRM server finds anything that's from the same publisher and effectively says “dont
delete because another solution from the same publisher claims you too."

Import the new version of the managed solution

Delete “holding” managed solution
The contents are the same, but in two managed layers. You delete the holding solution after the new version of the
solution, While you could eliminate the last two steps, you would have to accept the change in UniqueName of the new
solution what's really a new version of an existing solution. This will allow you to keep your Managed customisations
without the data and customisations you want to keep

To prevent getting in this scenario its always worth performing a good design that is future proof, IE using Lookups instead of
Picklists, Name Conventions etc

Note :Editing a managed solution XML file is not supported.

explore engage elevate

Unmanaged Solutions in Production?

Is it wrong to use unmanaged solutions in production?

Depends on how the solution is being delivered. ie internally or externally

Risks associated to how well IT infrastructure / TFS / Version control is maintained

If the business has procedures in place to disable direct customisation to live /
security

Unmanaged Solutions are easier to maintain for customers

Allows to snapshot production to resolve a blocking issue

Merging behaviour for updates is simpler, less complex than managed

Ensures customer business customisations & data are always part of the default
solution

Less risk of losing customisations as more difficult to remove

explore engage elevate

Types of Managed CRM Deployments

ISV Provider - Managed

MS Partner – Managed / Unmanaged

Customer - Managed / Unmanaged
• IT Department (In House)

• Several IT Departments for a

Global Organisation

Managing Multiple Development

Teams

Many Business Stakeholders

Numbers Of Custom Features

No of Released Solutions

Supporting Different Versions of

CRM

Supporting Different Platforms

Multiple Geographical Locations

No of project Development

Environments

No of End Uses

Number of Departments &

Stakeholders

Multiple Concurrent Solutions

Custom Development &

Integrations

Complexity

explore engage elevate

Solution Patching – CRM 2016

Previously when you add an entity customisation to a solution and export the
solution, all of its related assets would also be exported including attributes, forms,
views, relationships etc. Exporting all objects means that you can unintentionally
modify objects on the target deployment, or carry over unintended dependencies

Now with CRM 2016 we can release solution patches which only contain the updated
components

This helps to simplify the release process for updating existing solutions as we no
longer to to carry across existing components

You can roll up all the patches into a new solution version to replace the original
solution that the patches were created from.

explore engage elevate

Solution Patching – CRM 2016

CRM 2016 introduces following new features;
Clone a Patch

Clone a Solution

Apply Solution Upgrade -

Allows to Isolate exact changes to customisations
and improve Deployment Steps – Patches Will help
improve the release process

No longer automatically prompts to add related
objects

explore engage elevate

CRM Deployment Tools

Configuration Migration Tool

Solution Packager

Package Deployer

ALM Toolkit

TFS

Surestep

explore engage elevate

CRM Data Import Wizard

Manually Import Excel File

Create Mappings File

Limited to first 100000 records)10,000 for pre crm 2015

explore engage elevate

CRM Configuration Migration Tool

Included in the SDK

Create Data Schema and XML

Keeps Same GUID as Source, useful for deployment and
Testing

Great to use when there are complex relationships
involved

Limited to config data, Struggles with large Data Sets

Doesn’t update User Security Roles?

explore engage elevate

CRM Configuration Migration Tool

explore engage elevate

Creating Development Environments

Snapshots of VM
Infrastructure requirements / resources available
Reliability if in correct state

CRM Online Sandbox Copy function
Limited to copying online running sandboxes
Cost?

Database Restores
CRM Environment may be different / out of sync

Solution Files from Release Folder / Source Control
Replicates Release Process Steps
No requirement for CRM Organisation to be running
Config Data can be packaged separately

explore engage elevate

Managing Development Environments

Development Environments should be isolated from UAT /
Production

Should be Disposable

Should be created easily from Source Control / Snapshots

Dedicated Environment for Each Project to support release process /
Reduce Dependencies

For On Prem Development , consider AD and Infrastructure
differences ,

Should include items not included in solution file
Config
Service Accounts / Licence / Privileges
Custom integrations

explore engage elevate

Versioning and Release Management

Solution deployment processes need to be repeatable
and predictable. Using development and version control
techniques will support and simplify the approaches

Even with Solution packaging and layering of specific
components the process of managing parallel
development and tracking customization changes can
still be a challenge on enterprise Dynamics CRM projects

CRM solution content is stored and versioned in a single
binary solution zip file

explore engage elevate

Automating the repeatable release processes

Key Factor for CRM Success!

Support Agile Method

Multiple concurrent crm projects & development teams

Utilising Source Control

Managing Development Environments

Config Data

Automate Release Process

Collaboration

Controlling Risks

Reduce time spend on managing devs and releases

Increase ROI

explore engage elevate

Benefits of TFS / Version Control

Source Control for all copies of Solution files both
Managed & Unmanaged

Able to use these files to rebuild perishable development
environments ad hoc

Solution files are compressed

Using Unpacked Solution files can be useful for tracking
changes and comparing solution files

explore engage elevate

Version Control

Storing uncompressed solution files enables the following
individual CRM source elements to be independently
version controlled and tracked:

Customizations.xml
Solution.xml
Workflows
Web resources (built by the web resource file projects)
Plug-in assemblies (built by .Net projects)

All other elements in the customization and solution XML
require manual creation or merge into one single source
file by a developer as necessary

explore engage elevate

Tools

Solution Packager:
Unpacking the solution xml files to customization elements
Packing the customization elements to a single solution package
Supporting managed and unmanaged solutions
TFS automatic build process integration
Pluggable framework to add processing steps to specific customization elements

GUI editors
SiteMap editor / XRM Toolbox
Ribbon editor – Scott Durrow

TFS Requirements management Build management Version control Bug
tracking Test management Development reporting Team development, team
management Source control and branching Development and code policies
Localization QA process support Integrated Development Environment (VS)

explore engage elevate

Solution Packager

Allows to overcome solution restrictions enabling to move customisation
components between two environments

CRM solution development in isolated dev environments
CRM project with one or more parallel streams of work where each stream has
their own environment and different release schedule but working on the same
CRM Solution

CRM Solution containing changes might potentially override
customizations that are already in there. You might end up re-doing
some of work manually in two places.

Difficult to implement specific features such as changes to data model,
workflows, user interface and others.

Pack / Unpack Solution

Mappings

Merge

explore engage elevate

Solution Packager

explore engage elevate

Solution Packager

Currently Bug For binary file comparisons, it has the wrong logic.
Files that have not changed are treated as files that have changed,
and vice versa.

WorkAround: Use the PowerShell Cmdlet to delete the binary files
before unpacking the solution. The Example below removes the Xaml
files from the workflow folder.

Get-ChildItem -Path ...Solution\Workflows -Include *.xaml -File -
Recurse | foreach { $_.Delete()}

when you pack the solutions files, you can use the mapping option
to take the files from the source location.

explore engage elevate

ALM Toolkit / Release Automation

Allows the use of Powershell scripts to manage the
following;

Solution files

Config items

Deployment Tasks

Server Components / Tasks

Reduces the need for all Infrastructure resources to have
to be available every time there is a release or
development server requirements

Requires a central deployment manager / controller

explore engage elevate

ALM Toolkit is now Free!

Now Free to download for both Developer / Commercial Use!

Automate change management for Microsoft Dynamics CRM
projects using TFS. The ALM Toolkit empowers project teams to apply
agile methodologies to manage change, achieve developer isolation,
and deploy solutions to multiple environments.

Includes the following components:
CRM Solution Management PowerShell Scriptlets
CRM Data Manipulation PowerShell Scriptlets
CRM Data Copy Utility
Sample scripts for ALM environments

https://community.adxstudio.com/products/adxstudio-alm-
toolkit/download/

https://community.adxstudio.com/products/adxstudio-alm-toolkit/download/

explore engage elevate

Summary
Sprint Planning should consider solution dependencies, performance factors to reduce risks

Control Solution Dependencies in a core / base solution to support parallel release management to support
concurrent projects

Using collaboration such as Data dictionary will help prevent customisation errors/conflicts during dev

Address Risks & Performance considerations during solution design to avoid issues being missed in UAT / QA

Agile may delay underlying issues from being resolved, always best to factor in risks during design to prevent
occurrence

Use Tools such as Configuration Manager to migrate Config Items not included in solution

Solutions are Additive, Removing Customisations already deployed is not so straight forward

Managed Vs Unmanaged - The way we choose to export our solution may involve additional complexities such as
solution layering and merge behaviours

Use Source control such as TFS & Package Deployer for Regular backup streams for all solutions

TFS / Source Control useful for Rebuilding Development environments as well as Collaboration, Comparing &
Tracking Solution changes

Using ALM toolkit can significantly improve release management and save resources

ALM toolkit is now free to use, Reduce time spent managing development environments and deployments

May take time to implement at first but will save time & resources over long term, “CRM is Forever”

explore engage elevate

Resources & References

ALM for Microsoft Dynamics CRM 2011: CRM Solution
Lifecycle Management https://www.microsoft.com/en-
gb/download/details.aspx?id=39044

ALM Toolkit
https://community.adxstudio.com/products/adxstudio-
alm-toolkit/download/

Microsoft Dynamics CRM Software Development Kit
(SDK) for CRM Online and on-premises

https://www.microsoft.com/en-gb/download/details.aspx?id=39044
https://community.adxstudio.com/products/adxstudio-alm-toolkit/download/

explore

engage

elevate

Any Questions?

explore

engage

elevate

Please fill in your feedback
forms for this session!

Razwan Choudry

CRM Consultant / Architect / Trainer

Tweet me @crmconsultants if you have any questions

